Internet of things or IoT is a splendid collection of intercommunicating smart devices and solutions. These devices and solutions are driving modern technology and is an important aspect of the 21st century. It is a network of uniquely identifiable devices or things that are connected to the internet. These devices or things are programmable and have sensors to interact with humans or each other. IoT has been serving consumers with home automation, consumer electronics, industrial automation, etc. The key enabler of all IoT devices is the network as it integrates with a wide array of communication technologies. IoT applications are utilized in transportation, environment, energy, assisted living, smart cities, etc.

Design Principles and Best Practices for IoT Applications

As the digitalized world is getting increasingly interconnected with social platforms and artificial intelligence, the internet of things is the next big thing that is impacting each sector of the industry. Through IoT, machines are able to make decisions autonomously and industries are increasingly relying on automated machines for productivity without much human intervention. From smart thermostats that can adjust the home temperature to refrigerators that can automatically order food is low, IoT has been evolving with solutions that are benefiting the consumers immensely.

IoT services are attached to sensors and are connected to the internet. The IoT technological advancements and convergence within the IoT related technologies shape dynamically the development of new business models and IoT ecosystems. These ecosystems comprise of stakeholders representing the IoT application value-chain: components, embedded processing and communication, chips, service provision, architecture design, sensors, actuators, system integration, middleware, software, security, usage, test, etc.

This new model facilitates integrating the future generations of applications, network technologies, embedded systems, devices, and other evolving ICT advances, based on protocols, open platforms and standardized identifiers, and architectures. The deployment of IoT Large Scale Pilots (LSPs) to promote the market improvement of IoT and overcome the segmentation of vertically oriented architectures, closed systems, and application areas is the next important step in IoT development. Large Scale Pilots can address the concerns in different application areas by bringing together the technology supply and the application demand sides in real-life settings to demonstrate and validate the IoT technology in the real world.

While human social and economic activities continue to gravitate towards urban centers, Smart Cities deploy digital and telecommunication technologies to increase administration efficiency and improve the quality of life of their inhabitants. Cross-domain challenges in public safety, mobility, lighting, and energy efficiency can be addressed by user-centric ecosystems of interoperable vertical sub-systems. The integration and compatibility of sensors and actuators of connected sub-systems that are often complementary in the public space, in turn, stimulate the development of novel data-driven value-added application domain services. Due to their high density and ubiquitous nature, connected systems offer the prospect of evolving into platforms acquiring domain-level contextual information and delivering application management functions to diverse domains’ stakeholders. The LSPs need to address challenges in the fields of standardization, cyber-security, open data governance, and privacy and validate the novel business models underlying the services provisioned by future domain infrastructures. These IoT LSPs have to address technology challenges across the industrial sector verticals and go beyond the M2M, IoT vertical applications developed in recent years, in order to break the silos and to evaluate the real impact of IoT technology across industrial domains. The definition of themes needs to have a broader perspective and go beyond the narrower use cases proposed until now since in the future that cross-vertical collaboration and integration will be among the primary benefits of IoT.

Healthcare and wellness provide unique opportunities for extensive IoT implementation. Health care treatments, cost, and availability cater to society and the citizens striving for longer, healthier lives. IoT is an enabler to achieve enhanced care for patients and providers. It could generate greater asset utilization, new revenues, and reduced costs. In addition, it has the capability to change how health care is delivered. The development of the Internet of Health (IoH) applications dedicated to citizens’ health and wellness that spans care, medication administration, diagnostics, monitoring, fitness, etc. will allow the citizens to be more involved with their healthcare. The end-users could track the vitals signals with wearable devices, access medical records, get diagnostic lab tests conducted at home or at the office building, and monitor the health-related activities with Web-based applications on smartphones. The application of IoT in healthcare can enhance the access of care to people in remote locations or to those who are incapacitated to make routine visits to the hospital. It can also enable a quick diagnosis of medical conditions by monitoring and analyzing a person’s parameters. The medical treatment administered to the person under care can be enhanced by studying the consequence of therapy and the medication on the patients’ body.

The IoT applications in the buildings are interacting with the smart Building Management Systems (BMS) with an IP network, connecting all the building services while analyzing, monitoring, and controlling without the intervention of humans. The IoT applications are used by buildings managers to govern energy use and energy procurement and to maintain buildings systems. The BMS is based on the infrastructure of the existing Intranets and the Internet and therefore employs the same standard guidelines as other IT devices. The value in IoT application is in both the data and the computing devices. Gathering data from more building services and equipment offers a more granular view of exactly how each building is performing. These will develop the Internet of Buildings (IoB) applications. These IoT applications will decrease the need for human intervention to manage the complexity and the amount of data will improve exponentially. The IoB requires interoperability and seamless data interchange between networks of buildings, external utilities, different subsystems in a building, various smart equipment, and increased interface with building stakeholders.

The IoT facilitates connecting and monitoring assets from virtually anywhere for the smart grids and energy sector using the interconnected computing devices and utilities. Energy consumers/prosumers have the opportunity and accessibility to improve energy efficiency and energy use. The smart grid is significantly altering the way businesses operate. Using IoT technology, utilities are equipped to generate power more efficiently, reduce emissions and management costs, improve operations, and restore power faster, while operators are able to immediately identify outages, allowing for increased efficiency to manage responses.

IoT technology extends the monitoring and control of the plant and animal products during the whole life cycle from farm to fork. The concern will be in the future to design architectures and implement algorithms that will support each object for optimal behavior, according to its role in the Intelligent Farming system and in the food chain, lowering ecological footprint and economical costs and increasing food security. The smart cold chain logistics domain possesses high complexity and high risks because food and pharmaceutical goods are exposed to increasingly long and complex supply chains with many dangers of poor temperature control, delays, and physical mishandling. The prototype increases the transportation process by monitoring the state of the products during transportation and by early warnings when the goods are not stored according to clients’ requirements.

Wearables are integrating key technologies such as actuating, communication, nanoelectronics, low power computing, visualization, organic electronics, sensing, and embedded software, into intelligent systems to bring new functionalities into clothes, fabrics, patches, watches, and other body-mounted devices.

The IoT makes use of synergies that are generated by the linking of Consumer, Business, and Industrial Internet Consumer, Business, and Industrial Internet. The overlap creates the open, global network linking data, people, and things. This intersection leverages the cloud to link intelligent things that sense and transmit a broad array of data, helping to develop services that would not be obvious without this level of connectivity and analytical intelligence. The use of platforms is being delivered by transformative technologies such as things, cloud, and mobile.

The impulsive surrounding advancing IoT programs are very complex and issues such as systems integration, enablement, value-added services, network connectivity, and other management functions are all requires that generally must be utilized when the end-users seek to link smart edge devices into complex IoT applications. From the end-user standpoint, open relationships between various stakeholders in the IoT value chain are the best available means to employ these complexities. The technological trend is a move from systems where there are multiple users/people per device, people in the control loop of the system, and the system providing the ability for people to interact with people. The IoT offers a new epitome where there are multiple devices per user; the devices are things that are connected and interacting with other things. The communication will be with a variety of continuum of users, things, and real physical events.

Also Read: Applications Of Internet Of Things (IoT) In Engineering

Leave a Reply

Your email address will not be published. Required fields are marked *